Dear friends,

It is not many days left until many of us meet in Trapani to talk amphipods and be together with friends. This deep feeling of friendship and respect is what we feel most defines our little society - the Amphipodologists. We meet in small or large groups for workshops or collection-trips, or we work alone in between the meetings - we might not even go to all the meetings, and all the time the friendship is there helping our science along. Many of the marine amphipodologists have met at the IceAGE workshops in Wilhelmshaven (see AN40) and this April in Spata (p. 51) - and next spring there will be an opportunity for the beach-lovers to meet in Crete (p. 50).

This summer has presented us with the sad loss of our good colleague Murat Sezgin of the Sinop University on the Black Sea coast of Turkey. Living legend Torben Wolff of the Zoological Museum in Copenhagen passed away this spring - 97 years old. Torben, a member of the second ‘Galathea’ expedition and one of the first to document life in the abyssal zones of the sea, worked on his beloved deep-sea critters almost until his last day. We also remember Ed Bousfield.

The bibliography for this Amphipod Newsletter presents 419 papers on amphipods. Publications are on broad biodiversity studies, toxicology, ecology and systematics. Lowry and Myers have again presented us with a benchmark paper on the higher classification of the Amphipoda - which we are sure will be further discussed in Trapani.

Last - but not least - the interview of this Amphipod Newsletter presents our hyperiid colleague Wolfgang Zeidler from the South Australian Museum in Adelaide. The distance - both geographic and working on planktonic amphipods more than freshwater or benthic - might be a reason many might not know Wolfgang, but we hope to rectify that a bit with this interview.

Best wishes from your AN Editors,

Wim, Adam, Miranda and Anne Helene
Interview with Wolfgang Zeidler

Interviewing anyone 9 timezones away from you will present a few logistic problems. Thus, most of this was done via email, with a very nice skype-session in the end. That means that Wolfgang has written all his answers, as well as a short introduction. So - from here it is all Wolfgang:

To all my dear gammaridean colleagues: because I study hyperiideans, a pelagic group that spend part or all of their life cycle associated with gelatinous plankton, I have had very little direct contact with you, although I am mainly aware of your good work. Also, because there are very few scientists working with hyperiideans, and most are ecologists, I am almost alone in the world of hyperiidean systematics. But be not alarmed for I am quite happy working on my own, although I do appreciate the few interactions and collaborations that I have had with other colleagues.

When and why did you start studying amphipods?

Amphipods were not my first scientific interest. As a young graduate my ambition was to become a fisheries biologist thus combining my recreational passion for fishing with a career. Unfortunately, then as now, there were few jobs anywhere in Australia in marine science. So, according to the old proverb “those who cant do - teach” I did my penance teaching biology and science in Adelaide schools for 18 months before moving to Sydney to take up a position as Tutor in biology with the University of New South Wales. After about 18 months in the big smoke I was fortunate enough to obtain a scholarship to study for an MSc in Marine Science at the James Cook University of North Queensland, Townsville. At the time the Australian Government was very concerned about the effects of the apparent plague of ‘Crown of Thorns’ starfish on the Great Barrier Reef and so it was relatively easy to obtain grants for shiptime and associated research. Thus, I was able to access (and collect some myself) plankton samples collected fortnightly between Townsville and the GBR (for starfish larvae), over a period of about two years, to study the distribution and abundance of hyperiidean amphipods (Zeidler 1978, 1984). But first I had to overcome the taxonomic impediment of hyperiidean systematics. The literature was generally poor and sometimes difficult to obtain (no internet in those days). But this challenge ignited my passion for systematics and the detective work required.

Fortunately the taxonomic experience acquired for my MSc led to my employment...
with the South Australian Museum as ‘Curator of Marine Invertebrates’. So, back home, the circle completed! I soon discovered that my museum title was a misnomer and that my curatorial responsibilities covered all invertebrates (marine, freshwater & terrestrial) except for insects, arachnids and helminths. Sadly much of the collection was in poor shape, and so it was that I lost my way in science for the first few years while I tried to get the collection in order. Also, marine science was not on any government agenda.

However, the SA Museum had a strong focus on arid-zone research and it was relatively easy to organise field trips to most of Central Australia and beyond. One of the most memorable trips was to the Lake Eyre region when it was flooded in the mid-1970’s. On the way I discovered the fauna of the artesian springs of the Great Artesian Basin, resulting in many future trips to the region and other artesian springs in central and north-eastern Australia. The spring fauna is dominated by several species of mollusces, ostracods, one phreatoicid isopod and of course amphipods. For many years I tried to determine if only one widespread species was present or if, as I suspected, speciation had occurred in the different, geographically isolated, spring groups. The springs equating to aquatic islands in a desert. Unfortunately, I was unable to make much progress using morphological techniques and, at the time, molecular technology had not been developed or was too expensive. I described two new species, *Austrochiltonia dalhousiensis* and *Phreatochiltonia anophthalma*, and decided to abandon the project for the time being. It was taken up later by my colleague, Dr Rachael King, who has done a great job so far in describing several new species and genera. By then I had returned to the systematics of hyperiideans to complete the obligatory PhD and had no time for gammarids. Having lost my way with amphipods and published papers on mollusca, echinoderms and other crustaceans I decided it was time to tackle the suborder Hyperidea as a whole, sorting out minor problems and revising the systematics of the group by superfamily with a view to publishing a guide to the world fauna. To date I have completed most of these revisions and the guide book is already up to 700 pages, excluding figures. Looks like it might have to become two volumes.

Sorry that was a rather long-winded answer to the question but I thought you might be interested in my journey.

What are your favourite amphipod species names?

Most hyperiid names are boring, named after localities, expeditions, friends and enemies (if it is an ugly one with filthy habits). So, maybe one of my own, the phreatic, spring related, gammarid *Phreatochiltonia anophthalma*. The generic name readily identifies it as phreatic and the species name refers to it as
being without eyes. It is a favourite because I had intended to name it for being blind but a good colleague asked the question “how do you know that it can’t see”. I am now more careful when composing names for new taxa.

What amphipod appendage(s) do you like illustrating the best?

I have always enjoyed art so executing my own scientific illustrations is often the most satisfying part of my research. However, unlike gammarids, the segments and coxae of hyperiids are not always clearly defined and drawing whole animals can be frustrating, especially very small species. Some are mature at 2-3 mm.

What amphipod appendage(s) do you like illustrating the least?

None of them - I like them all! The act of illustrating is an interesting challenge, and it helps the scientist (who should do the illustrations themselves, by the way, not give away this important job to the artists) to see better. We get to really look for the characters – check that they really are there and are not just something we think we see, and this makes the whole job sounder.

Where is your favourite place to collect amphipods?

Collecting hyperiid amphipods is not an easy task and requires the use of a boat and plankton nets, preferably in oceanic waters. Hence, most of my research time has been spent with collections collected by past expeditions, housed in the major museums in Europe and North America. However, there is nothing more exciting than collecting specimens yourself and no place more magnificent than Antarctica. I was fortunate to be on the maiden voyage of the *Aurora Australis* to Heard Island and the Kerguelens during the mid-winter of 1990 and again to Prydz Bay during the summer of 1991, both courtesy of the Australian Antarctic Division, Hobart.
Places you wished you never tried to collect amphipods?

I have always enjoyed collecting, regardless of the environment, but perhaps digging up, by hand, the rotting carcass of a cow from an artesian spring to collect animals clinging to it would not be repeated too readily. Still there was great delight and satisfaction when amphipods were found.

Describe/name the most memorable amphipod moment(s)?

There are several, each when discovering, amongst collections, representatives of species previously known only from the unique holotype. Often it is the only other specimen in the world. It’s almost magic! Examples are *Lanceola longidactyla* Vinogradov, 1964 (one more in Copenhagen); *Megalanceola remipes* (Barnard, 1932) (several in Smithsonian); *Chuneola spinifera* Vinogradov, 1960 (one in Copenhagen); *Scina chelata* Vinogradov, 1970 (one in Smithsonian) and *Cheloscina antennula* Shih & Hendrycks, 1996 (one in Smithsonian).

NOTE to editors: there are some that discourage the description of new species based on a unique holotype. While one should be cautious, not publishing would have meant that the above species would have remained unknown and the fact that there are now at least two specimens of the same species would also remain unknown.

I have also had some memorable moments discovering phreatic amphipods in the springs of northern Australia. For a long time Australia was considered too dry to harbour a significant phreatic fauna. We now know that this is far from the truth, especially in north-western Australia. So, it was very exciting to find these animals in ground water, or springs, in parts of the country that are considered a desert. Of course we now know that if we look hard enough we can find these animals where ever springs are found, even if they are only active after a good season of rain.
Describe/name your most memorable amphipod meeting(s)?

International travel from Australia is relatively expensive and time consuming and this, combined with a lack of funds, and little interest in gammarids, has meant that I have made no effort to attend past amphipod meetings. That does not mean that I don’t like my gammarid colleagues!

We know the work with other scientists can shape your life. We are sure many will like to hear about such your experiences if you’d like to share...

Sorry when it comes to hyperiids I am very much a lone wolf, mainly because when I started my hyperiidean journey I was the only one working on the group, as a whole, outside of Russia. Also, here in Adelaide, I was the only marine invertebrate taxonomist and not much has changed since. Meetings with interstate, or international colleagues, usually involved discussions regarding taxonomy in general, with few opportunities for collaboration. Perhaps my joint fieldwork with Dr Winston Ponder, a malacologist from the Australian Museum (now retired), working on the fauna of the artesian springs, is the most significant for me because he encouraged me to pursue my research work and not to be afraid to publish. We spent many years collecting and studying the fauna of the springs of the GAB, highlighting the significance of these fragile habitats in publications etc., resulting in most of them being preserved in national parks. That was a most gratifying result.

Oh! Then there is the collaborative work I did with Dr Lisa Gershwin on the jellyfish fauna of Australia in the early 2000’s. Yes what was I thinking? Well because hyperiids are associated with gelatinous hosts I started to take in interest in them and kind of got sucked in, helped by Lisa’s enthusiasm for everything jellyfish, and taking the opportunity of her presence in Adelaide. It was a very productive collaboration, we published 9 papers (218 pp) and described 2 families, 3 genera and 31 species new to science. Thankfully I have slowly extricated myself from this project but

Not an invertebrate: the Koala. Photo: private

More backyard beauties - especially for all you bird-loving amphipodologists! Musk and Rainbow lorikeets. Photo: private
there are still some significant results that remain unpublished.

Any other general thoughts/comments?

While a lot of gammaridean taxonomists have been able to include molecular work in their studies this has been more difficult for me with hyperiids. This is because hyperiids, being pelagic, are collected in plankton samples which are almost always first fixed in formaldehyde to preserve the gelatinous plankton. Thus, the only way to obtain specimens for molecular work would be for me, or someone who knows hyperiids, to be present when plankton collections come on board to extract hyperiids before samples are preserved. However, I am making some progress in that direction. Currently Dr Charlotte Havermans and I are trying to sort out the mess that is the genus *Themisto*. Charlotte is in charge of the molecular work and I am doing the morphology. We now have material from most parts of the world but we always welcome more material from anyone who is prepared to send it to us. *Themisto* is a very common genus in Arctic and Antarctic waters, sometimes as abundant as krill and an important food source for birds, penguins and other marine predators. NOTE to ecologists playing with *Themisto* watch this space!

Eupronoe sp. Photo: Karen Osborn

One of the reasons I have continued with my research – and the reason I am working on the big book – is to pass on the knowledge I have gathered, rather than just go fishing or travelling to art-galleries overseas. Much of the information about the species should also end up in WoRMS.

Thank you so much for your interest, if you got this far!

Anne Helene and Wolfgang

Compilation of Amphipod relevant literature

Please tell the AN editors and Olli Coleman about your recent publications on amphipods - and send a pdf of your paper. Olli can include it on the server and the editors can include it in the bibliography....
Prof. Dr. Murat Sezgin in Memoriam

Prof. Dr. Murat Sezgin, a complete, brilliant scientist focused on marine biology and an expert on marine Amphipod species of Turkey, passed away on 28.07.2017 because of a deplorable traffic accident near Sivas province, Turkey.

He was born in 1974 in Malatya Province, Turkey. He completed his PhD thesis in 2003 at Ege University, Izmir on “Sublittoral benthic amphipod species of Aegean coasts of Turkey and their bio-ecological features”. Then, he continued his academic career in Sinop University, Faculty of Fisheries where he established a marine benthology team in a few couple of years and became a professor in 2013.

From the beginning of 2016 Prof. Dr. M. Sezgin served both as the vice chancellor and the Dean of his faculty.

During his short but fruitful academic life, he participated in many international scientific activities and in 2008 he was awarded the “Most Promising Young Scientist in the Field of Marine Ecology” by the Commission on The Protection of the Black Sea Against Pollution (Sofia, Bulgaria). He published 95 papers in peer reviewed journals, mainly on marine biology and ecology of the Black Sea. He was the author of more than 45 communications in national and international conferences. He collaborated in umpteen projects, most of which were international or FP7 projects and became a known and respected scientist abroad, particularly in the other Black Sea countries, mostly in Romania, Bulgaria and Ukraine due to his work-discipline and gentle personality.

In his last years, Prof. Sezgin also became a new light for the study of meiobenthology in Turkey by coordinating two international projects and guiding his team for their training, resulting in two PhD and a MSc thesis and several pioneering papers on marine meiofauna. His name has recently been attributed
to a tardigrade species (*Megastygarctides sezginii*), description of which will be published in the upcoming issue of the journal of Marine Biology Research.

Prof. Dr. Murat Sezgin was married and had a 7 years old son who also passed away because of the accident.

Rest in peace my friend, with your beloved son...

Murat Özbek, Levent Bat & Derya Turk Urkmez

Edward Lloyd Bousfield (1926-2016) in Memoriam

It is with a heavy heart and with great sadness that we inform you of the passing of Dr. Edward Bousfield on September 7, 2016

He was an exceptional scientist, one of the BIG Guns so to speak, a world authority on the systematics of amphipod crustaceans. He discovered and described over 300 new species and he had 22 named in his honour.

Ed joined the Canadian Museum of Nature (CMN), then the National Museum of Canada in 1950 after obtaining his BA and MA at the University of Toronto (1948 and 1949) and PhD at Harvard University (1954). Following his retirement in 1984, he continued as Research Associate at CMN, the Royal Ontario Museum in Toronto and the Royal British Columbia Museum in Victoria. Ed was pivotal to the 20th century growth of the CMN invertebrate collections through his widespread fieldwork which resulted in the contribution of over a million specimens. In 1995, Dr. Paul LeBlond and Ed formally described the large aquatic mega-serpent *Cadborosaurus willsi* in coastal north Pacific marine waters and large deep water lakes of the boreal northern hemisphere. Ed mentored numerous young scientists throughout his illustrious career (a few are still at the museum today) and influenced science through his key roles in scientific societies. In 1978, Ed was elected Fellow of the Royal Society of Canada and in 1985 he received the Government of Canada’s Outstanding Achievement Award. Even at nearly 90 years of age, Ed continued to travel to the CMN from Toronto to work on amphipods, his love of 66 years! Amphipods were definitely his “way of life”.
From 1993 to the last published issue in 2004 Ed Bousfield was Managing Editor of Amphipacifica, a journal of aquatic systematic biology. The journal was initiated in the early nineties when he was involved (with colleagues) in production of monographic papers on North American Pacific amphipods that proved overly large for standard scientific journals. Amphipacifica was thus set-up to overcome this problem and between 1994 and 2004, three volumes, each of 4 issues were published. In 2006, through the work of Michel E. Hendrickx and his team, all back issues of Amphipacifica were scanned and PDFs made for distribution on CD ROM so that access was made freely available to all amphipodologists. These PDFs are now available through the Aphia database (see: http://www.marinespecies.org/amphipoda/aphia.php?p=sourcelist&sName=Amphipacifica).

Ed Hendrycks & Kathy Conlan

An extensive obituary for Ed was published in The Canadian Field Naturalist 130, 359-372.
Bibliography

ALVES, F., C. ENJOLRAS & M. AVEROF 2016. Live imaging reveals the progenitors and cell dynamics of limb regeneration. ---- *eLife* 2016, e1|9766

ALVES, J., R. JOHNSSON & A. R. SENNA 2016. On the genus *Elasmopus* Costa, 1853 from the Northeastern coast of Brazil with five new species and new records. ---- *Zootaxa* 4184, 1-40. (Deals with Elasmopus yapanqui n. sp. (Pedra da Riscas do Meio, Ceará), E. incarocai n. sp. (Itacaré, Bahia), E. yahuarhuaci n. sp. (Lauro de Freitas, Bahia), E. viracochai n. sp. (São Goncalo do Amarante, Ceará), E. pachacutesi n. sp. (São Goncalo do Amarante, Ceará) and E. longipropodus. A key to male world Elasmopus is provided.)

ANDERSON, G. S. & L. S. BELL 2017. Comparison of faunal scavenging of submerged carrion in two seasons at a depth of 170m, in the Strait of Georgia, British Columbia. ---- *Insects* 8, 33.

ANDRADE, F. C., R. J. MASSUD-RIBEIRO & V. G. VELOSO 2016. Macrofauna composition of two beaches with distinct morphodynamics degrees in the beach arc Barra de São João—Ponta do Pai Vitorio Promontory. ---- *Brazilian Journal of Aquatic Sciences and Technology* 20, 69-78. (Talitridae)
ANDRADE, L. F. & A. R. SENNA 2017. Four new species of Cymadusa Savigny, 1816 (Amphipoda: Ampithoidae), and new records of C. filosa Savigny, 1816 from Brazilian coast. ---- Zootaxa 4226, 359-389. (Deals with Cymadusa icapui n. sp. (Icapui, Ceara State), C. rasa n. sp. (Rasa beach, Armacão dos Buzinas, Rio de Janeiro state), C. tartaruga n. sp.(Tartaruga beach, Armacão dos Buzinas, Rio de Janeiro state), C. trindadiensis n.sp. (Trindade island, Espirito Santo state), and C. filosa. A key to Brazilian Ampithoidae is provided.).

ANDRADE, L. F. & A. R. SENNA 2017. Two new species of Ampithoidae (Crustacea: Amphipoda) from northeastern Brazil. ---- Zootaxa 4282, 487-500. (Deals with Ampithoe robustimana n. sp. (Pacheco Beach, Ceara State) and Cymadusa ygara n. sp. (Icapui Beach, Ceara State).)

ANGUIANO, O. L., M. VACCA, M. E. RODRIGUEZ ARAUJO, M. MONTAGNA, A. VENTURIO & A. FERRARI 2017. Acute toxicity and esterase response to carbaryl exposure in two different populations of amphipods Hyalella curvispina. ---- Aquatic Toxicology, in press.

BARRETT, K. B., J. M. HAYNES & D. J. WARTON 2016. Thirty years of change in a benthic macroinvertebrate community of southwestern Lake Ontario after invasion by four Ponto-Caspian species. --- *Freshwater Science* 36, 85-102. (One of the invaders is *Echinogammarus ischnus*, which has replaced *Gammarus fasciatus* as the dominant amphipod.)

BEREZINA, N. A. 2016. Changes in life cycle of the Ponto-Caspian amphipod *Pontogammarus robustoides* at the northernmost part of its range. --- *Marine Ecology* 37(6), 1434-1446.

BIRD, G. A. 2016. Importance of the aquatic detritus food web in the transfer of radionuclides from water to higher trophic levels. ---- Proceedings 33d Canadian Nuclear Society Conference. (Not seen)

BIRK, M. A., C. PAIGHT & B. A. SEIBEL 2016. Observations of multiple pelagic egg masses from small-sized jumbo squid (*Dosidicus gigas*) in the Gulf of California. ---- *Journal of Natural History*, in press (*Parascelus edwardsi* and 2 spp of Hyperidae found with the egg masses.)

BOYKO, C. B. The “parasitic isopod” Rhabdocheirus incertus Bonnier, 1898, is a pantoechelis stage of a hyperiid amphipod (Amphipoda: Hyperiidea; Physocephalata). ---- Proceedings of the Biological Society of Washington 130, 1-4. (Vibilia sp., probably V. armata.)

BUNDSCHUH, M., T. HALM, M. O. GESSNER & R. SCHULZ 201. Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum. ---- Ecotoxicology, in press.

BUENO, M., M. O. TANAKA, A. A. V. FLORES & F. P. P. LEITE 2016. Vertical differences in species turnover and diversity of amphipod assemblages associated with coraline mats. ---- Estuarine, Coastal and Shelf Science 181, 153-159. (A Brazilian study)

BURRIDGE, A. K., M. TUMP, R. VONK, E. GOETZE & K. T. C. A. PEIJNENBURG 2017. Diversity and distribution of hyperiid amphipods along a longitudinal transect in the Atlantic Ocean. ---- Progress in Oceanology, in press. (From 39°N to 45°S, 70 species reported, including 2 species new to the Atlantic and 6 probably undescribed species.)

CLARE, D. S., M. SPENCER, L. A. ROBINSON & C. L. J. FRID 2016. Species-specific effects on ecosystem functioning can be altered by interspecific interactions. ---- Plos One 11 (11), e0165789. (Corophium volutator one of two test animals.)

COPILAS-CIOCIANU, D., T. RUTOVA, P. PARIL & A. PETRUSEK 2017. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. --- Molecular Phylogenetics and Evolution 112, 218-229. (Gammarus fossarum s. l.)

DALPADADO, P., H. HOP, J. RØNNING, V. PAVLOV, E. SPERFELD, F. BUCHHOLZ, A. REY & A. WOLD 2016. Distribution and abundance of euphausiids and pelagic amphipods in Korsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. --- Polar Biology 39, 1765-1784. (Themisto abyssorum and Th. libellula)

DAVOLOS, D., E. DE MATTHAEIS, L. LATELLA & R. VONK 2017. Cryptorchestia ruffoi sp.n. from the island of Rhodes (Greece), revealed by morphological and phylogenetic analysis (Crustacea, Amphipoda, Talitridae). ---- ZooKeys 652, 37-54. (Cryptorchestia ruffoi Latella & Vonk n. sp.)

DELC, T., V. SVARA, C. O. COLEMAN, P. TRONTELJ & C. FISER 2017. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). ---- Zoologica Scripta, in press. (Many new species, often morphologically almost identical, but with clear molecular differences: N. alpheus n. sp. (Cres island), N. anchialinus n. sp. (Sipun, Croatia), N. antipodes n. ap. (Cavle Spilja, Croatia), N. arethusa n. sp. (Krk island), N. doli n. sp. (Brac island), N. fjakae n. sp. (Jama pod Orjakom, Croatia), and N. pincikovae n. sp. (Pincikova, Croatia).

EKINCI, M. & A. MIROGLU 2017. Redescription of *Synurella osellai* Ruffo, 1974 (Crustacea, Amphipoda) from Ordu province (Turkey) with some taxonomic notes. — *Turkish Journal of Fisheries and Aquatic Sciences*, in press.

ESMAEILI - RINEH, S., A. SARI, C. FISER & Z. BARGRIZANEH 2017. Completion of molecular taxonomy: description of four amphipod species (Crustacea: Amphipoda: Niphargidae) from Iran and release of database for morphological taxonomy. — *Zoologische Anzeiger*, in press. (Deals with *Niphargus hosseiniei* n. sp. (Kermanshah prov.), *N. pericus* n. sp. (Marvdasht, Fars prov.), *N. sohrevardensis* n. sp. (Zanjan, Zanjan prov.), and *N. ilamensis* (Sarab-e-Moord, Ilam prov.).)

FIALKOWSKI, W. & P. S. RAINBOW 2017. What can the amphipod crustacean *Talitrus saltator* tell about variations in trace metal bioavailability in Baltic Sea coastal waters? — *Estuarine, Coastal and Shelf Science*, in press.

FIŠER, C., M. KONEC, R. ALThER, V. SVARA & F. ALTERMATT 2016. Taxonomic, phylogenetic and ecological diversity of Niphargus (Amphipoda; Crustacea) in the Holloch cave system (Switzerland). ---- Systematics and Biodiversity 15, 218-237. (Nine amphipod species new to Switzerland were found, and three new Niphargus species: N. murimali n. sp., N. styx n. sp. and N. muotae n. sp.)

GALIC, N. & V.E. FORBES 2017. Effects of temperature on the performance of a freshwater amphipod. ---- Hydrobiologia 785, 35-46. (Gammarus pseudolimnaeus eat more and die easier in warmer water.)

GALIC, N., V. GRIMM & V. FORBES 2017. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants. ---- Global Change Biology 23, 2973-2989 (Gammarus pseudolimnaeus.)

species in the marine fouling communities of British Columbia, Canada. ---- *BiolInvasion Records* 5, 205-212. (Nine amphipod species in Table 1)

GASCA, R & W. E. BROWN 2017. Symbiotic associations of crustaceans and a pycnogonid with gelatinous zooplankton in the Gulf of California. ---- *Marine Biodiversity*, in press (10 hyperiid species)

GAVIRA-O’NEILL, K., J. M. GUERRA-GARCIA, J. MOREIRA & M. ROS 2016. Mobile epifauna of the invasive bryozoan *Tricellaria inopinata*: is there a potential invasional meltdown? ---- *Marine Biodiversity*, in press. (Nine amphipod spp in Table 2)

GEROVASILEIOU, V., C. C. CHINTIROGLOU, D. KONSTANTINOU & E. VOULTSIADOU 2016. Sponges as “living hotels” in Mediterranean marine caves. ---- *Scientia Marina* 80, 279-289. (Six amphipod spp in Table 1.)

GÖRANSSON, P. 2017. Changes of benthic fauna in the Kattegat.—An indication of climate change at mid-latitudes? — Estuarine, Coastal and Shelf Science 194, 276-285. (General decrease, also in amphiliscids, but Harpiniá increased)

GRABOWSKI, M., A. WYSOCKA & T. MAMOS 2017. Molecular species delimitation methods provide new insight into taxonomy of the endemic Gammarus species flock from the ancient Lake Ohrid. — Zoological Journal of the Linnean Society 29, 1-14. (The situation is very complex. Here 3 new taxa are described and named. G. sywulai n. sp. (Ohrid lake offshore), G. cryptosalamaei n. sp. (from spring on shore of lake) and G. cryptoparechiniformis n. sp. (offshore); the latter 2 are morphologically indistinguishable from G. salemaei and G. parechiniformis, respectively. A preliminary, very nicely illustrated, key to Ohrid Gammarus is presented.)

animals with microencapsulated biomarkers for environmental monitoring. ---- *Scientific Reports* 6, 35427

HAFER, N. 2016. Conflicts over host manipulation between different parasites and pathogens: Investigating the ecological and medical consequences. ---- *BioEssays*, 38, 1027-1037.

HATLEY, J. & N. P. MURPHY 2016. Trouble at the top? Restricted distribution and extreme population isolation in an alpine crustacean assemblage with unexpected lineage diversity. ---- *Freshwater Biology* 61, 1891-1904. (An Australian study. Six lineages of *Neoniphargus* are found.)

HIKI, K., F. NAKAJIMA & T. TOBINO 2016. Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine. — Chemosphere 168, 1365-1374. (Grandidierella japonica)

HUDEC, I., C. FIŠER & J. DOLANSKY 2017. Niphargus diadematus sp. n. (Crustacea, Amphipoda, Niphargidae), an inhabitant of a shallow subterranean habitat in South Moravia (Czech Republic). — Zootaxa 4291, 41-60. (Found in spider traps (!) in the Dyje River watershed, Czech Republic. The paper also includes a table listing 19 morphological traits in 64 Niphargus species in the aquilex aggregate)

IACARELLA, J. C., E. J. HUDGINS, J. T. A. DICK & A. RICCIARDI 2017. Predatory behaviour of an invasive amphipod in response to varying conspecific densities under higher-order predation risk. — Canadian Journal of Fisheries and Aquatic Sciences, in press. (Gammarus pulex in Ireland)

IWASA-ARAI, T., A. S. FREIRE, A. C. COLOSIO & C. S. SEREJO 2016. Ontogenetic development and redescription of the whale louse Cyamus boopis Lütken, 1870 (Crustacea: Amphipoda: Cyamidae), ectoparasite of humpback whale Megaptera novaeangliae (Mammalia: Cetacea: Balaenopteridae). — Marine Biodiversity, in press (A lectotype is chosen. Table 1 lists the 7 species of whale lice reported from Brazil) (Unsure when this was finally publishes WV)

IWASA-ARAI, T., S. SICILIANO & C. S. SEREJO 2017. Life history told by a whale louse: a possible interaction of a southern right whale Eubalaena australis calf with humpback whale Megaptera novangliae. — Helgoland Marine Research 71-6 (Cyamus boopis found on stranded right whale in Brazil.)

JAMIESON, A. J., T. MALKOCS, S. B. PIERTNEY, T. FUJII & Z. ZHANG 2017. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. ---- Nature Ecology and Evolution 1, e 0051 (Two Hirondellea spp and Bathycellisoma schellenbergi from 10 000m deep contained PCBs and PBDs!!)

JANIAK, D. S., J. N. ADAMS, B. RUBINOFF & R. W. OSMAN 2016. Predator-prey interactions of the polyclad, Euplona gracilis, and the amphipod, Apocorophium lacustre, in the Chesapeake Bay. ---- Estuaries and Coasts 40, 511-523. (Euplona is a significant predator of Apocorophium.)

JERMACZ, Ł., A. DZIERZYŃSKA-BIAŁOŃCZYK & A. KOBAK 2016. Predator diet, origin or both? Factors determining responses of omnivorous amphipods to predation cues. ---- Hydrobiologia in press. DOI:10.1007/s10750-106-2917-1

JUDGE, J. & J. P. BARRY 2016. Macroinvertebrate community assembly on deep-sea wood falls in Monterey Bay is strongly influenced by wood type. ---- Ecology 97, 3031-3043. (Bathyceradocus n. sp., Seba bathybia and Paronesimoides voightiae.)

Gammaropsis longipropodi, Photis stridulus n. sp. (Maando Island) and Podoceropsis clavapes n. sp. (Somaemuldo Island.)

JUNG, T. W., J. G. KIM & S. M. YOON 2016. Two new species of pontogeneid amphipods (Crustacea, Senticaudata, Calliopiidae) from Korean waters. — ZooKeys 635, 53-79. (Deals with *Eusiroides pilopalpus* n. sp. (Jeju Island) and *Paramoera dentipleurae* n. sp. (also Jeju Island).)

KAIM-MALKA, R. A., D. BELLAN-SANTINI & J.-C. DAUVIN 2016. On some *Haploops* species collected in the North Atlantic Ocean with the description of *Haploops islandicus* n. sp. (Crustacea: Gammaridea: Ampeliscidae) (Contribution to the knowledge of the genus *Haploops*. 8.). — Zootaxa 4179, 42-76. (Deals with *Haploops carinata* Liljeborg, 1855 (revived), *H. setosa*, *H. robusta* Sars, 1891 (revived) and *H. islandica* n. sp. (66°59'N, 8°48'W, 1630m). A synoptic table compares the four species, and an illustrated key to all species in the genus is presented.)

Kalinkina, N., A. Sidorova, T. Polyakova, N. Belikna, N. Berezina & I. Litvinova 2016. (Decline in the deepwater benthic communities abundance in the Onego Lake under multifactor influence.) — Principy Ekologii 5, 47-68. (In Russian)

Khedhir, I., H. Djabou & A. Afli 2016. Does increased connectivity with the Mediterranean Sea improve the ecological status of the macroinvertebrates in the lagoon of Boughrara (SW Mediterranean)? — Community Ecology 17, 156-166.

KODAMA, M., M N. OHTSUCHI & K. KON 2016. A new species of the genus Rhinocetes Just, 1983 (Crustacea: Amphipoda: Ischyroceridae) from Japan. — Zootaxa 4169, 133-144. (Rh. spinicaudus n. sp. from Nabeta Bay, Shizuoka. A key to all Rhinocetes is provided.)

LABAY, V. 2016. Review of amphipods of the Melita-group (Amphipoda: Melitidae) from the coastal waters of Sakhalin Island (Far East Russia). III. Genera Abludomelita Karaman, 1981 and Melita Leach, 1814. ---- Zootta 4156, 1-73. (This important monograph deals in depth with the taxa in the Melita-Abludomelita group. As a result, a number of taxa are transferred to other genera. The genus Nurina is synonymized with Melita, while Paraniphargus is revived. Abludomelita rotundactyla is transferred from Melita, with Megamoera aequidentata as a junior synonym; it, A. klitini n. sp. (Tatar Strait, SW shelf of Sakhalin Island) and A. okhotensis n. sp. (Kashevarova Shoal, Sea of Okhotsk) are fully described, and a key to Abludomelita is presented. In the genus Melita s.l. M. almagosa, M. annandalei, M. cognata, M. dulcicola, M. latiflagella, M. oba, and M. valesi are transferred to Paraniphargus; Melita awa, M. hainanensis and M. plumulosa to Josephosella; Melita amoena, M. breviarticulata, M. denticulata, M. huanghiaensis, M. japonica, M. machaera, M. mucronata, M. rotundactyla and M. unamoena to Abludomelita; Melita leiotelson, M. reidi and M. shiromodari to Tegano. Here described is Melita shimizui sakhalinensis n. sp (Aniva Bay, Sea of Okhotsk), and a key to North-Pacfic Melita is presented. The genus Paraniphargus is discussed, and 2 new genera erected: Barnardomelita n. gen. for Melita matilda, and Ledoyeromelita n. gen. for Melita excavata and probably also M. festiva.)

LAGRUE, C., K. HEAPHY, B. PRESSWELL & R. POULIN 2016. Strong association between parasitism and phenotypic variation in a supralittoral amphipod. ---- Marine Ecology Progress Series 553, 111-125. (Transorchestia chilensis)

increase the impact of an invasive species. ---- International Journal of Parasitology 47, 291-296. (Gammarus pulex in Ireland)

LEVINGS, C.D. 2016. Ecology of salmonids in estuaries around the world: adaptations, habitats and conservation. ---- University of British Columbia Press. 388p (online appendices). (Includes several references and examples of the role of estuarine amphipods in salmonid food webs.)

LISCHKA, S. & W. HAGEN 2016. Seasonal dynamics of mesozooplankton in the Arctic Kongsfjord (Svalbard) during year-round observations from August 1998 to July 1999. ---- Polar Biology 39, 1859-1878. (Themisto abyssorum and unidentified amphipods in table 1, but mainly copepods discussed)

LITTLE, S., P. J. WOOD & M. ELLIOTT 2017. Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change. ---- Estuarine, Coastal and Shelf Science, in press.

LOBANOVA, A. I. & Y. A. SHUSTIN 2017. (Characteristic features of nutrition habits inherent to fish species found in the littoral zone of the lake Onego.). ---- ??????, 2(163), 52-56. (In Russian)

LOWRY, J. K. & A. A. MYERS 2016. Zaramillidae, a new amphipod family from the subantarctic Kerguelen Islands (Amphipoda, Senticaudata, Gammaroidea,
Zaramillidae fam. nov.). ----- Zootaxa 4169, 387-389. (Contains only Zaramilla kergueleni.)

LOWRY, J. K. & A. A. MYERS 2017. A Phylogeny and Classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). ----- Zootaxa 4265, 1-89. (This is a benchmark paper, the final one in the series of monographs on amphipod classification by these authors. The proposed new classification is much too extensive to be repeated here, but the new families are included in the "New Taxa" listings.)

LUNT, J., J. REUSTLE & D. L. SMEE 2017- Wave energy and flow reduce the abundance and size of benthic species on oyster reefs. ----- Marine Ecology Progress Series 569, 25-36.

MALEK-HOSSEINI, M. J. & A. ZAMANI 2017. A checklist of subterranean arthropods in Iran. ----- Subterranean Biology 21, 19-46. (10 sp of Niphargus (all from caves and karstic springs).)

MANKO, M. J., A. W. SŁOMSKA & K. JAZDZEWSKI 2017. Siphonophora of the Gulf of Aqaba (Red Sea) and their associations with crustaceans. ----- Marine Biology Research 11, 480-485. (Hyperiid associates listed in Table 2)

2017

MATSUNO, K., A. YAMAGUCHI, A. FUJIWARA, J. ONODERA, E. WATANABE, N. HARADA & T. KIKUCHI 2016. Seasonal changes in mesozooplankton swimmer community and fecal pellets collected by sediment trap moored at the Northwind Abyssal Plain in the western Arctic Ocean. — *Bulletin of the Fisheries Faculty of Hokkaido University* 66, 77-85. (Themisto libellula)

MESZNER, U. & M. I. ZETTLER 2016. Die aktuelle Verbreitung von Amphipoda (Crustacea) im Verlauf der Oberen Havel. — *Lauterbornia* 81, 57-69 (Eight amphipod species in Table 1)

MIKKELSEN, N. & T. PEDERSEN 2017. Invasive red king crabs feed on both spawned-out capelin and their eggs. ---- Marine Ecology Progress Series 563, 139-155.

MONROY-VELAZQUEZ, L. V., R. E. RODRIGUEZ-MARTINEZ & F. ALVAREZ 2017. Taxonomic richness and abundance of cryptic peracarid crustaceans in the Puerto Morelos Reef National Park, Mexico. ---- Peer Journal 5, e3411. (Amphipods listed in Table 1)

MOORE, A. F. P. & J. E. DUFFY 2016. Foundation species identity and trophic complexity affect experimental seagrass communities. ---- Marine Ecology Progress Series 556, 105-121. (i.a. Grandidierella japonica)

MORAIS, P. & M. REICHARD 2017. Cryptic invasions: A review. ---- Science of the Total Environment, in press. (Cryptic invasions are either invasions of non-native lineages within their species native range, or invasions of non-native species, that are not recognized because of misidentification as a a different species.)

MUGGELBERG, L. L., K. E. HUFF HARTZ, S. A. NUTILE, A. D. HARWOOD, J. R. HEIM, A. P. DERBY, D. P. WESTON & M. J. LYDY 2017. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. ---- Environmental Pollution 220, 375-382.

MYERS, A. A. 2016. Amphipoda (Crustacea) from Palau, Micronesia: families Maeridae and Melittidae. ---- Zootaxa 4170, 451-474. (Deals with Elasmopus alalo, E. laminischia n. sp., Linguimera siaes n. sp., ?Parelasmopus setiger (possibly a species complex), Quadrirmaera pacifica, Q. serrata, and Dulichiella belun n. sp.)

MYERS, A. A., J. K. LOWRY & Z. BILLINGHAM 2016. A new family, genus and species of freshwater amphipod Australomicroprotopus megacoxa gen. nov., sp. nov. (Senticaudata, Corophiidea, Microprotopeidae, Australomicroprotopidae fam. nov.) from Australia. ---- Zootaxa 4161, 412-418. (From freshwater streams in Victoria.)

NARAHARA-NAKANO, Y., T. NAKANO & K. TOMAHARA 2017. Deep-sea amphipod genus Eurythenes from Japan, with a description of a new Eurythenes species from off Hokkaido (Crustacea: Amphipoda: Lysianassoidae). ---- Marine Biodiversity, in press. (Deals with E. aequilatus n. sp. (Sea of Okhotsk off Hokkaido, 1580m) and E. magellanicus)

ORTIZ, M. & R. LALANA 2016. Estado actual del conocimiento de los anfipodos (Crustacea, Peracarida), de Cuba: Morfología, Historia, Taxonomía y Bibliografía. (Current state of knowledge of the amphipods (Crustacea, Peracarida), of Cuba: Morphology, History, Taxonomy and Bibliography.) ---- *Revista Investigaciones Marinas* 36(1), 1-19. (In Spanish. Table 1 furnishes data on all species described from Cuban waters.)

ORTIZ, M. & I. WINFIELD 2017. A new species of *Nuuanu* (Crustacea, Amphipoda, Nuuanidae) from a Caribbean coral reef with identification keys to males and females of *Nuuanu* species. ---- *Zootaxa* 4294, 197-208. (*N. jaumei* n. sp from Puerto Morelos reef, Quintana Roo, Mexico.)

ÖZBEK, M., A. TASDEMER & S. YILDIZ 2016. (Benthic macroinvertebrates of Adigüzel Reservoir (Denizli, Turkey).) ---- *Ege Journal of Fisheries and Aquatic Sciences* 33, 259-263. (In Turkish. *Pontogammarus robustoides*)

and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. — Polar Biology 39, 2065-2076.

PEART, R. A. 2017. A synopsis and key to the genus Exampithoe K.H.Barnard, 1925 (Amphipoda: Senticaudata: Ampithoidea), with descriptions of five new species. — Journal of Crustacean Biology 37, 63-75. (Deals with E. ecklonica n. sp. ((Cape Banks, NSW), E. helena n. sp. (Geraldton, W Austr.), E. malus n. sp. Dampier archipelago, W Austr.), E. otway n. sp. Cape Otway, Vict.) and E. vasse n. sp. nr Yallingup, W Austr.). A key to all Exampithoe is provided. E. waratah is transferred to Ampithoe.)

PEREZ-SCHULTHEISS, J. 2016. Synopsis of the superfamily Lysianassoidea (Amphipoda: Gammaridae) in Chile. — Boletin del Museo Nacional de Historia Natural, Chile 65, 193-246. (A most welcome critical survey of all that is known of Chilean Lysianassoidea. It contains a fair number of large range extensions, as well as some classificatory changes: the new genus Exuristes (type Uristes yamana) is erected for E. yamana and E. serratus, both transferred from Uristes, while Tryphosella schellenbergeri and T. serrata are transferred to Uristes, and the classification of Uristes paramoi in this genus is confirmed. Maps showing the Chilean distribution of all species and a key to Chilean Lysianassoidea are also provided.)

PETERS, J. 2017. We’ve polluted hadal zones (deep sea trenches) before we even could explore them. ---- Scienceosaurus, 3 pp

RASTRICK, S. P. S. & N. M. WHITELEY 2017. Comparison of whole animal costs of protein synthesis among polar and temperate populations of the same species of gammarid amphipod. ---- *Comparative Biochemistry and Physiology A* 207, 100-106 (*Gammarus oceanicus*).

RATTANAMA, K., M. S. PATTARATUMRONG, P. TOWATANA & K. WONGKAMHAENG 2016. Three new records of gammarid amphipod in Songkhia Lake, Thailand. ---- *Tropical Life Sciences Research* 27 (Suppl. 1), 53-61 (*Hyale dollfusi, Grandidierella megnae & Hourstonius japonica*).

REMAIL, T. M., S. L. SIMPSON & D. F. JOLLEY 2017. Effects of enhanced bioturbation intensities on the toxicity assessment of legacy-contaminated sediments. ---- *Environmental Pollution* 226, 335-345. (*Victoriopisa australiensis* and *Melita plumulosa* test animals.)

RODRIGUEZ, M., L. C. ARMENDARIZ & A. R. CAPITULO 2017. A new genus and species of Ingolfiellidae (Crustacea, Ingolfiellida) from the hyporheic zone in the Sierra de la Ventana, and its biogeographic relevance. ---- *Zootaxa* 4290, 99-112. (Deals with *Yacana ventania* n. gen. n. sp., a taxon apparently most closely related to the South African ingolfiellids.)

RUFCHAEI, R., S. H. HOSEINIFAR, A. MIRJAZANI & HIEN VAN DOAN 2017. Dietary administration of *Pontogammarus maeticus* extract affects immune response, stress resistance, feed intake and growth performance of Caspian roach (*Rutilus caspicus*) fingerlings. ---- *Fish & Shellfish Immunology* 63, 196-200

Atlantic sandy beaches of Brazil and Spain. ---- *Marine & Freshwater Research* 67, 1634-1643.

SCHEPIS, W. R., T. V. MEDIEROS, S. A. SILVA & D. M. S. ABESSA 2016. (Acute toxicity and contamination by metals in the sediments of the Rio dos Bugres, Ilha de São Vicente, SP.) ---- *Brazilian Journal of Aquatic Sciences and Technology* 20, 42- ??, (In Portuguese)

SCHRÖTER, F. 2016. Community structure of amphipods from sediment traps in the eastern Fram Strait - interactions with environmental parameters in a changing Arctic. ---- *Master thesis*, Eberhard Karls Universität, Tübingen (not seen)

SEPULVEDA, R. D. & N. VALDIVIA 2017. Macrobenthic community changes of intertidal sandy shores after a mega-disturbance. ---- *Estuaries and Coasts* 40, 493-501 (A Chilean study after earthquake and tsunami)

SHIMOMURA, M. & K. TOMIKAWA 2016. *Epimeria abyssalis* sp. n. from the Kuril-Kamchatka Trench (Crustacea, Amphipoda, Epimeridae). ---- *ZooKeys* 638,
125-142. (From 5480m deep, the deepest Epimeria ever collected. With a key to N. Pacific Epimeria.)

SIDOROV, D. A., A. D. KATZ, S. J. TAYLOR & M. V. CHERTOPRUD 2016. A reassessment of the phylogenetic utility of genus-level morphological characters in the family Bogidiellidae (Crustacea, Amphipoda), with description of a new species of Eobogidiella Karaman, 1981. ---- ZooKeys 610, 23-43. (Eobogidiella venkataramani n. sp., known from a single specimen from the Shirawati River basin, Western Ghats, India. The authors discuss the value of various morphological characters in the Bogidiellidae, and consider the generic placement of the present new taxon as preliminary.)

SIDOROV, D. A. & G. V. SAMOKHIN 2016. Kruberia abchasica, a new genus and species of troglobiont amphipods (Crustacea: Gammaridae) from Krubera Cave (Western Transcaucasia). ---- Arthropoda Selecta 23, 371-379. (This new genus is close to the typhlogammarids, recently merged with Gammaridae by Sket and Hou)

SORRENTINO, R., J. ALVES, R. JOHNSON & A. R. SENNA 2016. A new species of Cyphocarididae (Crustacea, Amphipoda, Lysianassoidea) from off the northeastern Brazilian coast. ---- Zootaxa 4161, 345-356. (Cyphocaris pedroi n. sp., from a tuna stomach, St Peter and St Paul Archipelago. With a key to world Cyphocaris species.)

SPIKKELAND, I., K. M. OLSEN, B. KINSTEN & G. KJELLBERG 2016 (The freshwater amphipod Crangonyx pseudogracilis shown to occur in Norway). ---- Fauna, Oslo 69, 24-34. (In Norwegian. Found on Jæren, SW Norway in 2012)

SPILMONT, N., A. HACHE, M. A. FAASSE, J. JOURDE, C. LUCZAK, L. SCURONT & C. ROLET 2016. First records of Pilohyale littoralis (Amphipoda: Hyalidae) and Boccardia proboscidea (Polychaeta: Spionidae) from the coast of the English Channel: habitat use and coexistence with other species. ---- Marine Biodiversity, in press. (P. littoralis found in numbers at Wimereux, Pas de Calais) (NB. I can’t find it WV)

STAMATAKI, E. & A. PAVLOPOULOS 2016. Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis. ---- Current Opinion in Genetics and Development 39, 149-156. (Encomium means fulsome, enthusiastic praise; I looked it up)

STRAUB, S., P. E. HIRSCH & P. BURKHARDT-HOLM 2017. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. ---- International Journal of Environmental Research and Public Health 14, 774

SUAREZ-JIMENEZ, R., C. D. HEPBURN, G. A. HYndes, R. J. McLEOD, R. B. TAYLOR & C. L. HURST 2017. Importance of the invasive macroalgae Undaria pinnatifida as trophic subsidy for a beach consumer. ---- Marine Biology 164, art. 113 (A New Zealand study, featuring Bellorchestia quoyana.)

TATO, R. & J. MOREIRA 2017. Two new species of the suborder Senticaudata (Crustacea: Amphipoda) from the upper continental slope off Galicia (NW Iberian Peninsula). ---- Zootaxa 4300, 217-237. (Deals with Pareurystheus vituoloi n. sp. and Photis guerai n. sp. (both Ferrol Canyon, 43°54'N, 8°57'W, 1005m) Keys to the genera of Protomedeiinae, to Pareurystheus species and to Atlantic Photis species are provided.)

TOMIKAWA, K., T. NAKANO, A. SATO, Y. ONODERA & A. OHTAKA 2016. A molecular phylogeny of Pseudocrangonyx from Japan, including a new subterranean species (Crustacea, Amphipoda, Pseudocrangonyctidae). ---- Zoosystematics and Evolution 92, 187-202. (Deals with Pseudocrangonyx gudariensis Tomikawa & Sato n. sp. from the Aomori pref., N. Honshu. There are several as yet undescribed species in this genus in Japan.)

WANG, N., J. L. KUNZ, C. D. IVEY, C. G. INGERSOLL, M. C. BARNHART & E. A. GLIDEWELL 2017. Toxicity of Chromium (VI) to two mussels and an amphipod in water-only exposures with or without a co-stressor of elevated temperature, zinc, or nitrate. — Archives of Environmental Contamination and Toxicology 72, 449-460 (The amphipod is Hyalella azteca)

WINFIELD, I., M. E. HENDRICKX & M. ORTIZ 2017. A new deep-water species of Trischizostoma (Crustacea: Amphipoda: Gammaridea: Trischizostomatidae) from western Mexico, NE Pacific Ocean. — Journal of the Marine Biological Association UK 97, 141-149. (T. unam n. sp. from 17°10′N, 101°37′W, c 1400m)

WINKLER, N. S., A. PEREZ-MATUS, A. A. VILLENA & M. THIEL 2017. Seasonal variation in epifaunal communities associated with giant kelp (Macrocystis pyrifera) at an upwelling-dominated site. — Austral Ecology 42, 132-144. (A Chilean study. Peramphithoe femorata and Aora typica very important)

WONGKAMHAENG, K., P. DUMRONGROJWATTANA & M. S. PATTARATUMRONG 2016. Two new species of Floresorchestia (Crustacea, Amphipoda, Talitridae) in Thailand. — ZooKeys 635, 31-51. (Deals with F. boonyanusithii n. sp. (Phutsa Reservoir, NE Thailand) and F. buraphana n. sp. (Chonburi, E. Thailand).)
YAMAMORI, L. & M. KATO, 2017. The macrobenthic community in intertidal sea urchin pits and an obligate inquilinism of a limpet-shaped trochid gastropod in the pits. — Marine Biology 164, art. 61 (Aoroides rubellus and Maera serratipalma.)

ZEIDLER, W. 2016. A review of the families and genera of the superfamily Platyscelioidea Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperidea), together with keys to the families, genera and species. — Zootaxa 4192, 1-136. (Another thorough revision of a segment of the Hyperidea. There are keys to all families, genera and species, as well as extensive descriptions of the type species of all genera. New taxa are the families Eupronoidae, for the genera Eupronoe and Parapronoe, Amphithyridae, for the genera Amphithyris, Amphithyropsis n. gen, and Paralycaea, and Thamneidae, for the genus Thamneus.)

NEW TAXA

New order

Ingolfiellida Hansen, 1903 (new status)

New families and subfamilies

Adeliellidae Lowry & Myers, 2017
Ambasiidae Lowry & Myers, 2017
Amphithyridae Zeidler, 2016
Australomicroprotopodidae Myers, Lowry & Billingham, 2016
Derjugianididae Lowry & Myers, 2017
Eupronoidae Zeidler, 2016
Pakynidae Lowry & Myers, 2017
Parargissidae Lowry & Myers, 2017
Pseudamphilochidae Lowry & Myers, 2017
Thamneidae Zeidler, 2016
Vemanidae Lowry & Myers, 2017
Zaramillidae Lowry & Myers, 2016

New genera and subgenera

Amphithyropsis Zeidler, 2016
Australomicroprotopus Myers, Lowry & Billingham, 2016
Barnardomelita Labay, 2016
Eusceliotes Stebbing, 1888 (rev.)
Exuristes Perez-Schultheiss, 2016
Fluviadulzura Myers, Lowry & Billingham, 2017
Kruberia Sidorov & Samokhin, 2016
Ledoyeromelita Labay, 2016
Lowryella Morino & Miyamoto, 2016
Nanopalpus Jung & Yoon, 2016
Pakynus Lowry & Myers, 2017 (nom. nov)
Persianorchestia Momtazi, Lowry & Hekmatari, 2017
Solitroides Suzuki, Nakano, Nguyen, Nguyen, Morino & Tomikawa, 2017 Talitridae
Yacana Rodriguez, Armentariz & Capitulo, 2017

New species and subspecies:

abchasica Sidorov & Samokhin, 2016 (Kruberia)
abyssalis Shimomura & Tomikawa, 2016 (Epimeria)
aequilatus Narahara-Nakano, nakano & Tomikawa, 2017 (Eurythenes)
alpheus Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus)
alpinus Alther, Fiser & Altermatt, 2016 (Gammarus)
anchialinus Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus)
antipodes Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus)
arraialensis Ros, Lacerda & Guerra-Garcia, 2017 (Pseudaeginella)
belun Myers, 2016 (Dulichiella)
boonyanusithii Wongkamhaeng, Dumrongrojwatana & Pattaratumrong, 2016
bulbodigitus Jung, Kim, Soh & Yoon, 2016 (Eusirus)
buraphana Wongkamhaeng, Dumrongrojwatana & Pattaratumrong, 2016
cajasi Alonso & Jaume, 2017 (Hyalella)
carinata Liljeborg, 1855 (Haploops) (rev.)
clavapes Jung, Choi, Kim, Yoon 2017 (Podiceropsis) Photidae

cylindrica Zettler & Glück, 2016 (Wallametopa) Stenothoidae

dentipleurae Jung, Kim & Yoon, 2016 (Paramoera) Pontogeneidae

diadematus Hudec, Fiser & Dolansky, 2017 (Niphargus) Niphargidae
doli Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus) Niphargidae
ecklonicola Peart, 2017 (Exampitohoe) Amphipodidae
elegantulus Hou, in Zhang & Hou, 2017 (Pseudocrangonyx) Pseudocrangonyctidae

fjake Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus) Niphargidae
gudariensis Tomikawa & Sato in Tomikawa et al., 2016 (Pseudocrangonyx) Pseudocrangonyctidae

guerrai Tato & Moreira 2017 (Photis) Photidae

ehike Tomikawa, Tanaka & Nakano, 2016 (Priscomilitaris) Priscomilitaridae

ehelenae Peart, 2017 (Exampitohoe) Amphipodidae

hosseiniei Esmaeili-Rineh, Sari, Fiser & Bargrizanveh, 2017 (Niphargus) Niphargidae

icapui Andrade & Senna, 2017 (Cyamidea) Amphipodidae

iceage Jimenez Campeau & Coleman, 2017 (Sicaftidea) Sicaftoididae

ilamensis Esmaeili-Rineh, Sari, Fiser & Bargrizanveh, 2017 (Niphargus) Niphargidae

incarocai Alves, Jonsson & Senna, 2016 (Elasmopus) Maeridae

islandica Kaim-Malka, Bellan-Santini & Dauvin, 2016 (Haploops) Ampeliscidae

jaumei Ortiz & Winfield, 2017 (Nuanau) Nuanuidae

klitini Labay, 2016 (Abludomelita) Melitidae

laminischia Myers, 2016 (Elasmopus) Maeridae

maculanegra Zeina & Asakura, 2017 (Cerapus) Ischyroceridae

magnacularius Eun, Hendrycks & Kim (Protohyale) Hyalidae

malus Peart, 2017 (Exampitohoe) Amphipodidae

megacoxa Myers, Lowry & Billingham, 2016 (Australomicroprotopus) Australomicroprotopidae

meufong Hughes & Kaji, 2016 (Quadrivisio) Maeridae

motokawai Suzuki, Nakano, Nguyen, Nguyen, Morino & Tomikawa, 2017 (Solitoides) Talitridae

muotae Fiser, Konec, Alther, Svara & Altermatt, 2016 (Niphargus) Niphargidae

murimali Fiser, Konec, Alther, Svara & Altermatt, 2016 (Niphargus) Niphargidae

nirvanai Montazi, Lowry & Hekmatari, 2017 (Persianorchestia) Talitridae

okhotensis Labay, 2016 (Abludomelita) Melitidae

otway Peart, 2017 (Exampitohoe) Amphipodidae

pachacutesi Alves, Jonsson & Senna, 2016 (Elasmopus) Maeridae

pedrol Sorrentino, Alves, Jonsson & Senna, 2016 (Cyphocaris) Cyphocarididae

persicus Esmaeili-Rineh, Sari, Fiser & Bargrizanveh, 2017 (Niphargus) Niphargidae

piloi Myers, Trivedi, Gorsavi & Vahhrjani, 2017 (Parhyale) Hyalidae

piloalopus Jung, Kim & Yoon, 2016 (Eusiroidea) Pontogeneidae

pincikovae Delic, Svara, Coleman, Trontelj & Fiser, 2017 (Niphargus) Niphargidae

quesmsensis Laeyghi & Montazi, 2017 (Amphitoe) Amphipodidae

rasae Andrade & Senna, 2017 (Cyamidea) Amphipodidae

robuta Sars, 1891 (Haploops) (rev.) Melitidae

robustimana Andrade & Senna, 2017 (Amphitoe) Amphipodidae

ruffoi Latella & Vonk, in Davolos et al. 2017 (Cryptorchestia) Talitridae

ssp sakhalinensis Labay, 2016 (Melita shimizui) Melitidae

schoiottii Just, 2017 (Cephaloecetes) Ischyroceridae

siaes Myers, 2016 (Linguimaera) Maeridae

sohrevardensis Esmaeili-Rineh, Sari, Fiser & Bargrizanveh, 2017 (Niphargus) Niphargidae

spinicauda Myers, Lowry & Billingham, 2017 (Fluviadulzura) Hadziidae

spinicaudus Kodama, Ohtsushi & Kon, 2016 (Rhinoecetes) Ischyroceridae

stridulus Jung, Choi, Kim, Yoon 2017 (Photus) Photidae

styx Fiser, Konec, Alther, Svara & Altermatt, 2016 (Niphargus) Niphargidae

tartarugae Andrade & Senna, 2017 (Cyamidea) Amphipodidae

telukrimau Lim, Azman, Takeuchi & Othman, 2017 (Pseudaeiginella) Caprellidae

trindadensis Andrade & Senna, 2017 (Cyamidea) Amphipodidae

uai Bastos-Pewreira & Ferreira, 2017 (Spelaeogammarus) Artesiidae
unam Winfield, Hendrickx & Ortiz, 2017 *(Trischizostoma)*

Ampithoidae

vasse Pear, 2017 *(Exampithoe)*

venkataramani Sidorov, Katz, Taylor & Chertoprud, 2016 *(Eobogidiella)*

ventania Rodriguez, Armendariz & Capitulo, 2017 *(Yacana)*

viricochai Alves, Jonsson & Senna, 2016 *(Elasmopus)*

vittucho Tato & Moreira, 2017 *(Pareurystheus)*

wadai Morino & Miyamoto, 2016 *(Lowryella)*

yguayruhuac Alves, Jonsson & Senna, 2016 *(Elasmopus)*

ygara Andrade & Senna, 2017 *(Cymadusa)*

yupanqui Alves, Jonsson & Senna, 2016 *(Elasmopus)*

Bogidiellidae

Eobogidiella venkataramani

Caprellidae

Pseudaeginella arraialensis, telukrimau

Cyphocarididae

Cyphocaris pedroi

Derjugianidae

Epimeriidae

Epimeria abyssalis

Eupronoidae

Eurytheneidae

Eurythenes aequilatus

Eusiridae

Eusirus bulbodigitus

Gammaridae

Gammarus alpinus

Kruberia abchasica

Hadziidae

Fluviadulzura spinicauda

Hyalidae

Parhyale piloi

Protohyale magnaocularis

Hyalellidae

Hyalella cajasi

Ingolfiellida

Ingolfiellidae

Yacana ventania

Ischyroceridae

Taxonomic overview

Adeliellidae

Ambasiidae

Ampeliscidae

Haploops carinata (rev.), islandica, robusta (rev.)

Ampithyridae

Ampithyropsis

Ampithoidae

Ampiothoe quesmhensis, robustimana

Cymadusa icapui, rasae, tartarugae, trindadensis, ygara

Exampithoe ecklonicola, helenae, malus, otway, vassse

Artesiidae

Speleogammarus uai

Australomicroprotopodidae

Australomicroprotopus megacoxa

Bogidiellidae

Eobogidiella venkataramani

Caprellidae

Pseudoeginella arraialensis, telukrimau

Cyphocarididae

Cyphocaris pedroi

Derjugianidae

Epimeriidae

Epimeria abyssalis

Eupronoidae

Eurytheneidae

Eurythenes aequilatus

Eusiridae

Eusirus bulbodigitus

Gammaridae

Gammarus alpinus

Kruberia abchasica

Hadziidae

Fluviadulzura spinicauda

Hyalidae

Parhyale piloi

Protohyale magnaocularis

Hyalellidae

Hyalella cajasi

Ingolfiellida

Ingolfiellidae

Yacana ventania

Ischyroceridae
AMPHIPOD NEWSLETTER 41

Cephaloceetes schioettei
Cerapus maculanigra
Rhinoecetes spinicaudus

Maeridae
Elasmopus incarocai, laminischia, pachacutesi, viracochai, yahuarhuaci, yuponquii
Linguimaera siaes
Quadrivisio meufong

Melitidae
Abludomelita klitinii, okhotensis
Barnardomelita
Dulichiella belun
Ledoyeromelita
Melita shimizui sakhalinensis

Niphargidae
Niphargus alpheus, anchialinus, antipodes, arethusa, diadematus, doli, fjakae,
hosseineiei, ilamensis, muotae, murimali, persicus, pincikovae, sohrevardensis, styx

Nuuanuidae
Nanopalpus
Nuuanu jaumei

Pakynidae
Pakynus

Parargissidae
Parascelidae
Eusceliotes (rev.)

Photidae
Photis guerrai, stridulus
Podoceropsis clavapes

Pontogeneiidae
Eusiroides pilopalpus
Paramoera dentopleurae

Priscomilitaridae
Priscomilitaris heike

Protomedeinae
Pareurystheus vitucoi

Pseudamphilochidae
Pseudocrangonyctidae
Pseudocrangonyx elegantulus, gudariensis

Sicafodiidae
Sicafodia iceage

Stenothoidae
Wallametopa cylindrica

Talitridae
Cryptorchestia ruffoi
Floresorchestia boonyanusithii, buraphana
Lowryella wadai
Persianorchestia nirvana
Solitroides motokawai

Thamneidae
Trischizostomatidae
Trischizostoma unam

Uristidae
Exuristes

Vemanidae
Zaramillidae

Wim
International Sandy Beaches Symposium (ISBS) – 25 to 29 of May 2018

I am pleased to announce that the 8th International Sandy Beaches Symposium will take place from the 25th to the 29th of May at the Institute for Marine Biology Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, Greece. Many advances have been made since the establishment of sandy beach ecology as a discipline (1st symposium, 1983, Port Elizabeth, South Africa). Below, in a nutshell:

A brief summary of the sandy beach research

Morphophysical aspects were firstly approached and interactions of energy and material were identified as responsible of shaping a beach “personality”. With this background central paradigms about features of the resident fauna and biodiversity patterns were developed. Actually most of them are based on amphipods, as they usually dominate (in abundance) temperate and subtropical beaches. The human-environment perspective appeared soon to be a challenge. For a long time the “pristine condition” was the preferred target of sandy beach research, whether as a baseline or as an impact-control study. But it became more and more evident that the human component cannot be escaped. We actually need to know more about the impacts and their dynamics, if we want to get a clear picture of the system. That is why lately the definition of beaches as “social-ecological systems” is getting more and more in use. On the other hand, while the human presence on sandy beaches, is an obvious feature (you can check yourself in the summer), it is not so easy to address and to share research with beach stakeholders. This is definitely an open challenge.

I am then particularly keen to invite to ISBS2018 researchers and students through the amphipod newsletter, as I believe that this lively and interdisciplinary group will strongly contribute to a correct species-environment vision, often biased in favour of general models, loved by managers but perhaps too general to capture the intrinsic diversity of beaches. Detailed information can be found at www.isbs2018.wordpress.com and updates are also released on https://www.researchgate.net/project/Sandy-beaches-2018-Linking-knowledge-to-build-integrated-paradigms-and-face-global-change-challenges.

Looking forward to meet you in Crete,

Lucia
IceAGE amphipods

Senckenberg am Meer (DZMB) is housing a huge amount of crustacean material collected during two expeditions in 2011 and 2013 via IceAGE (Icelandic marine Animals: Genetics and Ecology). The Icelandic waters are of particular interest for studying patterns of diversity with depth, especially for comparing the diversity profiles with depth for amphipods with various functional properties. The animals are from 56 areas between Greenland and Norway from 150 to 3000 m depth. So far 26,461 of the 58,000 amphipod individuals are sorted by numerous enthusiastic colleagues to 42 (!) families during two amphipod workshops in Wilhemshaven, Germany (see AN40 and Spala, Poland (photos here); the first workshop was entirely funded by the Volkswagen Stiftung. The second IceAGE amphipod workshop piggybacked on the Synthetis and 7th IceAGE workshop in Spała, April 2017.

Anne-Nina Lörz and Ania Jażdżewska

Photos by Ania Jażdżewska and Christian Bomholt
Amphipods take a bite out of the headlines

In August the world became excited about amphipods (as they should!) but for a very different reason than their morphological beauty!

A 16 year boy from Melbourne, Australia was merged in the shallow waters at Dendy Street Beach, Brighton, Australia and when he emerged half an hour later it appeared he had been bitten and ‘attacked’ by some form of tiny marine creatures.

Once out, this story sent the world’s Press into a frenzy! Pictures of the teenager's feet dripping with blood were sent around the world. Warnings were put on webpages in case the images caused some distress.

In Italy the news had a title like "marine insects attack a tourist!”

In UK one person said “I think the thing I love best about this story is how the dad investigated it especially the part about him trying all the different kinds of food. I’ve never heard of amphipods doing anything like this but I guess the Australian ones are just meaner, like every other animal there.”

What could have bitten him? News reports were everything from piranhas to ‘Sea lice’!

Its amphipods! Through the media the pressure was on to name them and name them now. Alastair Poore said: “Researchers at Museums Victoria have identified the likely suspect of the "sea lice" attack in Melbourne as lysianassid amphipods. Rare to see amphipods in the news like this!”

Jo Taylor and Genefor Walker-Smith responded to the media on pressure surrounding the "sea bug attack" and why it matters to get the fact right: https://www.timeshighereducation.com/blog/australian-sea-bug-attack-scientists-getting-our-facts-right-and-why-it-matters

Meanwhile this news story was the topic of much discussion on the amphipod Facebook page: https://www.facebook.com/groups/238356639577927/

So there we have it, it WAS amphipods but they don’t usually ‘attack’ like this but it did make the headlines and allow us amphipod workers to get people to understand and appreciate our beloved animals more.

Related articles:

Miranda
Jim Lowry and Alan Myers have published their third paper on the higher taxonomic classifications of the Amphipods this year. Here we present figure 11 from the paper, as a summary of their new classifications after removing Ingolfiellidea to a separate order. The remaining order Amphipoda is now divided into six suborders with respective infraorders and parvorders.